Skip to main content

4 posts tagged with "RAG"

View All Tags

· 8 min read
Yingfeng Zhang

Since the open-sourcing of Infinity, it has received a wide positive response from the community. Regarding the essential RAG technology we promote - multiple recall (vector recall, full-text search, and structured data query), some friends mentioned that simply using vectors can also meet the requirements. What we traditionally refer to as vector retrieval is a type of query based on dense vector data, known as Dense Embedding. There is another type of vector data, sparse vector, known as Sparse Embedding, which can provide the precise queries necessary for RAG. By combining these two types of vector data, multi-path recall can be achieved (2 paths of recall). With Sparse Embedding, there is no need for full-text search; BM25 can be completely replaced (BM25 is a common full-text indexing and sorting method, which can be seen as a variation of TF/IDF). Let's see if this is really possible. Dense Embedding refers to vectors where the dimensions may not be very high, but each dimension is numerically represented as a certain weight. Sparse Embedding refers to most dimensions of the vector being zero, with only a few dimensions having values; the overall vector dimension can be very high.

· 10 min read
Yingfeng Zhang

"Is Infinity just another vector database? Since there are already many vector databases available, why bother creating another one from scratch?" "Traditional databases can easily incorporate vector search capabilities, so why reinvent the wheel?" "Elasticsearch already has decent support for what you refer to as multiple recall. Then, what sets Infinity apart?"

· 15 min read
Yingfeng Zhang

On January 4, 2024, CMU professor Andy Pavlo, known for his acclaimed database lectures, published his 2023 database review, primarily focusing on the rise of vector databases. 2023 saw notable advancements in this field with significant investments made in April. By 2023Q3, vector databases were used as external memory for large language models. In 2023Q4, this approach started to gain popularity and became widely known as Retrieval-Augmented Generation (RAG), with some even predicting that 2024 would be the "Year of RAG." Drawing from Andy's viewpoints and the challenges facing RAG, we would like to provide our own evaluation of the future prospects for vector databases.