Quickstart
Prerequisites
- CPU: x86_64 with AVX2
- OS: Linux with glibc ≥ 2.17
- Python: Python 3.10+
Install Infinity locally using pip
Infinity, also available as a Python module, eliminates the need for a separate back-end server and all the complex communication settings. Using pip install
and import infinity
, you can quickly build a local AI application in Python, leveraging the world's fastest and the most powerful RAG database:
- Install Infinity as a Python module:
pip install infinity-sdk==0.3.0
- Use Infinity to conduct a KNN search:
import infinity
# Connect to infinity
infinity_object = infinity.connect("/path/to/save/to")
db_object = infinity_object.get_database("default_db")
table_object = db_object.create_table("my_table", {"num": {"type": "integer"}, "body": {"type": "varchar"}, "vec": {"type": "vector, 4, float"}})
table_object.insert([{"num": 1, "body": "unnecessary and harmful", "vec": [1.0, 1.2, 0.8, 0.9]}])
table_object.insert([{"num": 2, "body": "Office for Harmful Blooms", "vec": [4.0, 4.2, 4.3, 4.5]}])
res = table_object.output(["*"])
.match_dense("vec", [3.0, 2.8, 2.7, 3.1], "float", "ip", 2)
.to_pl()
print(res)
Deploy Infinity as a separate server
If you wish to deploy Infinity with the server and client as separate processes, see Deploy infinity server.
🛠️ Build from Source
See Build from Source.
Try our Python examples
- Create table, insert data, and search
- Import file and export data
- Delete or update data
- Conduct a vector search
- Conduct a full-text search
- Conduct a hybrid search
Python API reference
For detailed information about Infinity's Python API, see the Python API Reference.